2(2^x)+1/4(4^x)-320=0

Simple and best practice solution for 2(2^x)+1/4(4^x)-320=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(2^x)+1/4(4^x)-320=0 equation:



2(2^x)+1/4(4^x)-320=0
Domain of the equation: 44^x!=0
x!=0/1
x!=0
x∈R
We multiply all the terms by the denominator
22^x*44^x-320*44^x+1=0
Wy multiply elements
968x^2-14080x+1=0
a = 968; b = -14080; c = +1;
Δ = b2-4ac
Δ = -140802-4·968·1
Δ = 198242528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{198242528}=\sqrt{1936*102398}=\sqrt{1936}*\sqrt{102398}=44\sqrt{102398}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14080)-44\sqrt{102398}}{2*968}=\frac{14080-44\sqrt{102398}}{1936} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14080)+44\sqrt{102398}}{2*968}=\frac{14080+44\sqrt{102398}}{1936} $

See similar equations:

| 2-(3x+2)=-38 | | 2=3x+64 | | 3x+5(-x-3)=5 | | 13(9k+3)=−2(k−8) | | x/4-12=14 | | 12x^-3+8x=0 | | 1/4x=3 | | 5g=56 | | 11t+15=5(t-3)+5t | | 14=-v-6v | | 6(x+5)=9(x-4) | | f+9=20 | | −8=(10x−3) | | -10x+4-8x=-28x+6 | | -5r+70=8r+5 | | -2(4x-8)=20 | | -7x+2(3-4x)=29 | | 75c-300=25200 | | -2+7(3x+8)=12 | | 30x=110 | | 8(2y+7)=64 | | 2x-6(7x-11)=-134 | | 5(2x)=12x-3 | | -2k+3-5=4 | | –4h–16h=0 | | 3(x+9)=81 | | 17+19w=5+16w | | -21w+16w=+16+14 | | 2n+5=8n-7 | | 4b-3=29-4b | | -2c+10=42 | | 9(v+4)=6v+12 |

Equations solver categories